Carbon Dioxide, Bicarbonate and Carbonate Ions in Aqueous Solutions at Deep Earth Conditions

2020 
We investigate the effect of pressure, temperature and acidity on the composition of water-rich carbon-bearing fluids at thermodynamic conditions that correspond to the Earth's deep Crust and Upper Mantle. Our first-principles molecular dynamics simulations provide mechanistic insight into the hydration shell of carbon dioxide, bicarbonate and carbonate ions, and on the pathways of the acid/base reactions that convert these carbon species into one another in aqueous solutions. At temperature of 1000 K and higher our simulations can sample the chemical equilibrium of these acid/base reactions, thus allowing us to estimate the chemical composition of diluted carbon dioxide and (bi)carbonate ions as a function of acidity and thermodynamic conditions. We find that, especially at the highest temperature, the acidity of the solution is essential to determine the stability domain of CO$_2$, HCO$_3^-$ and CO$_2^{2-}$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map