Human-like redundancy resolution: An integrated inverse kinematics scheme for anthropomorphic manipulators with radial elbow offset

2022
As a mimic of the human arm structure, anthropomorphic manipulators with radial elbow offset (AMREO) are often deployed on humanoid service robots. However, the unique offset leads to difficulties in solving the analytical inverse kinematics (IK), which poses a challenge for further anthropomorphic control. This paper presents an integrated scheme for solving the path-wise IK problem of a 7-DoF AMREO in the position domain. Unlike other approaches, special attention is paid to the naturalness of the arm configuration, with the aim of making AMREO exhibit human-like behavior in human-centered environments. First, an analytical IK solution of AMREO for a single end-effector pose is derived based on the arm angle parameterization. Then, inspired by the habitual arm configurations in human reaching movements, the natural arm configuration mapped to wrist position is proposed for AMREO. To learn the patterns implied therein, a LSTM-based natural arm angle prediction network (NAPN) is designed and trained based on a human demonstration dataset. Finally, a redundancy resolution framework embedded with NAPN is built to generate smooth and natural joint configurations in the path-wise IK tasks. Comparative experiments show that the proposed analytical IK algorithm has better computational efficiency and precision than conventional methods, and can give complete results for one IK call within 4 μs. In addition, continuous path tracking experiments on a real robot validate the effectiveness and anthropomorphism of the redundancy resolution scheme based on NAPN.
    • Correction
    • Source
    • Cite
    • Save
    0
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map