Implications of Natural Occlusion of Ventilated Racks on Ammonia and Sanitation Practices

2014 
Examination of ventilated rat racks prior to semiannual sanitation revealed silicone nozzles and ventilation ports that were partially or completely occluded with granular debris. We subsequently sought to document performance standards for rack sanitation and investigate the effect of ventilation port occlusion on rack function and animal husbandry practices. We hypothesized that individually ventilated cages with occluded airflow would require more frequent cage changes, comparable to those for static cages (that is, every 3 to 4 d). Sprague–Dawley rats were housed under one of 4 conditions: no airflow occlusion, occluded air-supply inlet, occluded air-exhaust outlet, and occlusion of both inlet and outlet. Cages were changed when daily ammonia concentration exceeded 20 ppm or after 14 d had elapsed. Most cages with unoccluded or partial airflow occlusion remained below the 20 ppm limit until day 12 or 13. Cages with occlusion of both inlet and outlet exceeded 20 ppm ammonia by as early as day 5. Airflow was significantly lower in cages with occlusion of both inlet and outlet airflow. Weekly inspection revealed that occlusion of ventilation ports was detectable by 3 mo after semiannual sanitation. This study demonstrates that silicone nozzles should be removed prior to rack sanitation to improve the effectiveness of cleaning ventilation ports and nozzles. While the rack is in use, silicone nozzles and ventilation ports should be inspected regularly to identify occlusion that is likely to diminish environmental quality in the cage. Intracage ammonia levels are significantly higher when both inlet and outlet airflow are occluded.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map