Optical Demonstration of THz, Dual-Polarization Sensitive Microwave Kinetic Inductance Detectors

2016 
Polarization sensitive, microwave kinetic inductance detectors (MKIDs) are under development for the next generation BLAST instrument (BLAST-TNG). BLAST-TNG is a balloon-borne submillimeter polarimeter designed to study magnetic fields in diffuse dust regions and molecular clouds. We present the design and performance of feedhorn-coupled, dual-polarization sensitive MKIDs fabricated from TiN/Ti multilayer films, which have been optimized for the 250 \(\upmu \)m band. Measurements show effective selection of linear polarization and good electrical isolation between the orthogonally crossed X and Y detectors within a single spatial pixel. The detector cross-polar coupling is \(<\)3 %. Passband measurements are presented, which demonstrate that the desired band-edges (1.0–1.4 THz) have been achieved. We find a near linear response to the optical load from a blackbody source, which has been observed in previous devices fabricated from TiN. Blackbody-coupled noise measurements demonstrate that the sensitivity of the detectors is limited by photon noise when the optical load is greater than 1 pW.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    14
    Citations
    NaN
    KQI
    []
    Baidu
    map