Robust generation of erythroid and multilineage hematopoietic progenitors from human iPSCs using a scalable monolayer culture system

2019
Abstract One of the most promising objectives of clinical hematology is to derive engraftable autologous hematopoietic stem cells (HSCs) from human induced pluripotent stem cells(iPSCs). Progress in translating iPSC technologies to the clinic relies on the availability of scalable differentiation methodologies. In this study, human iPSCs were differentiated for 21 days using STEMdiffTM, a monolayer-based approach for hematopoietic differentiation of human iPSCs that requires no replating, co-culture or embryoid bodyformation. Both hematopoietic and non-hematopoietic cells were functionally characterized throughout differentiation. In the hematopoietic fraction, an early transient population of primitive CD235a+ erythroid progenitorcells first emerged, followed by hematopoietic progenitorswith multilineage differentiation activity in vitro but no long-term engraftment potential in vivo. In later stages of differentiation, a nearly exclusive production of definitive erythroid progenitorswas observed. In the non-hematopoietic fraction, we identified a prevalent population of mesenchymal stromal cells and limited arterial vascular endothelium (VE), suggesting that the cellular constitution of the monolayer may be inadequate to support the generation of HSCs with durable repopulatingpotential. Quantitative modulation of WNT/β-catenin and activin/nodal/TGFβ signaling pathways with CHIR/SB molecules during differentiation enhanced formation of arterial VE, definitive multilineage and erythroid progenitors, but was insufficient to orchestrate the generation of engrafting HSCs. Overall, STEMdiffTM provides a clinically-relevant and readily adaptable platform for the generation of erythroid and multilineage hematopoietic progenitorsfrom human pluripotent stem cells.
    • Correction
    • Source
    • Cite
    • Save
    60
    References
    14
    Citations
    NaN
    KQI
    []
    Baidu
    map