Coupled Retrieval of the Three Phases of Water from Spaceborne Imaging Spectroscopy Measurements

2019
Measurements of reflected solar radiation by imaging spectrometers allow to quantify water in different states (solid, liquid, gas) thanks to the discriminative absorption lines in the solar spectrum. We developed a retrieval method to quantify the amount of water in each of the three states from spaceborne imaging spectroscopy data, such as those from the German EnMAP mission. Our retrieval couples atmospheric radiative transfer simulations from the MODTRAN5 radiative transfer code to a surface reflectance model based on the Beer-Lambert law. The model is inverted on a per-pixel basis using a maximum likelihood estimation formalism. Based on a unique coupling of the canopy reflectance model HySimCaR and the EnMAP end-to-end simulation tool EeteS, we performed a sensitivity analysis by comparing the retrieved values with the simulation input leading to an R2 of 0.991 for water vapor and 0.965 for liquid water. Furthermore, we applied our algorithm to airborne AVIRIS-C data to demonstrate the ability to ma...
    • Correction
    • Source
    • Cite
    • Save
    52
    References
    7
    Citations
    NaN
    KQI
    []
    Baidu
    map