High-Temperature Electroweak Symmetry Non-Restoration from New Fermions and Implications for Baryogenesis.

2020
The strength of electroweak symmetry breaking may substantially differ in the early Universe compared to the present day value. In the Standard Model, the Higgs vacuum expectation value (vev) vanishes and electroweak symmetry gets restored at temperatures above $\sim 160$ GeV due to the Higgs field interactions with the high-temperature plasma. It was however shown that new light singlet scalar fields may change this behaviour. The key feature is the non-standard dependence on the Higgs vev of the new particles mass which can vanish at large Higgs vev, inducing a negative correction to the Higgs thermal mass, leading to electroweak symmetry non-restoration at high temperature. We show that such an effect can also be induced by new singlet fermions which on the other hand have the advantage of not producing unstable directions in the scalar potential, nor introducing additional hierarchy problems. As temperature drops, such a high-temperature breaking phase may continuously evolve into the zero-temperature breaking phase or the two phases can be separated by a temporary phase of restored symmetry. We discuss how our construction can naturally arise in motivated models of new physics, such as Composite Higgs. This is particularly relevant for baryogenesis, as it opens a whole class of possibilities in which the baryon asymmetry can be produced during a high temperature phase transition, while not being erased later by sphalerons.
    • Correction
    • Source
    • Cite
    • Save
    0
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map