Requirements for a 4ω Thomson scattering system on megajoule scale laser facilities.

2020
With the arrival of megajoule class laser facilities, the features of laser-produced plasmas are evolving toward unprecedented high electron temperatures reached in the environment of a cm-scale indirect-drive Hohlraum for a few tens of nanoseconds. In this context, the need for in situ experimental characterization of the plasma parameters becomes critical in order to test hydrodynamics simulations in these novel conditions. Taking advantage of the progress achieved in the last 40 years, Thomson scattering has become a classic diagnostic in the characterization of laser produced plasmas. However, the many beam configuration of the megajoule scale experiments makes the measurements increasingly complex because the Thomson scattering signals produced by the 351 nm heaters themselves dominate the plasma emission around 263 nm, a wavelength range typically of interest when a 4ω Thomson probe is used. This paper reviews the requirements for and the potential of a 4ω Thomson scattering system to be operated on such 351 nm megajoule scale facilities in order to characterize the hot (Te > 3 keV) plasmas produced in the indirect-drive irradiation of a Hohlraum. It is found that the configuration of the diagnostic could be optimized in order to enable the detection of the ion acoustic resonances over a large domain of plasma parameters. The results for the electron plasma wave resonances are also given.
    • Correction
    • Source
    • Cite
    • Save
    26
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map