Elaboration and Characterization of Ni (NPs)-PANI Hybrid Material by Electrodeposition for Non-Enzymatic Glucose Sensing

2021
A two-step process was used to prepare a nickel-polyaniline nanocomposite (Ni (NPs)-PANI). The first step consisted of the electrodeposition of polyaniline (PANI) in the form of thin films on fluorine-doped tin oxide (FTO) substrates from a solution of aniline, lithium perchlorate, and sulfuric acid at a pH of 0.5. In the next step, the obtained Ni (NPs) were deposed in this polyaniline films. The structural, morphological, and electrocatalytic properties of the prepared nanocomposites were then investigated. X-ray diffraction (XRD) confirmed the cubic structure of the nanocomposites, and Fourier-transform infrared spectroscopy (FTIR) indicated the existence of nickel and polyaniline in the prepared nanocomposites. Morphological analysis carried out through SEM revealed that the nanocomposites exhibit uniform dispersion of nickel nanoparticles into the polyaniline matrix. Amperometry and cyclic voltammetry were employed to investigate the electrocatalytic glucose oxidation behavior of the nanocomposite electrode in the alkaline medium. The prepared nickel-polyaniline nanocomposite electrode exhibited high sensitivity (278.8 µA mM−1 cm−2) in a range from 0.02 to 1 mM at a sufficiently fast response time of 3 s and a low glucose detection limit of 1 µM (S/N = 3). A cost-effective and straightforward synthesis procedure to prepare Ni (NPs)-PANI nanocomposite would make this material an efficient glucose sensor with appropriate stability, higher reproducibility, and excellent sensitivity.
    • Correction
    • Source
    • Cite
    • Save
    46
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map