The Neutron Star Interior Composition Explorer (NICER): Design and Development

2016
During 2014 and 2015, NASA's Neutron star Interior Composition Explorer(NICER) mission proceeded success- fully through Phase C, Design and Development. An X-ray (0.2-12 keV) astrophysics payloaddestined for the International Space Station, NICER is manifested for launch in early 2017 on the Commercial Resupply Services SpaceX-11 flight. Its scientific objectives are to investigate the internal structure, dynamics, and energetics of neutron stars, the densest objects in the universe. During Phase C, flight components including optics, detectors, the optical bench, pointing actuators, electronics, and others were subjected to environmental testingand integrated to form the flight payload. A custom-built facility was used to co-align and integrate the X-ray "con- centrator" optics and silicon-drift detectors. Ground calibration provided robust performance measures of the optical (at NASA's Goddard Space Flight Center) and detector (at the Massachusetts Institute of Technology) subsystems, while comprehensive functional tests prior to payload-level environmental testingmet all instrument performance requirements. We describe here the implementation of NICER's major subsystems, summarize their performance and calibration, and outline the component-level testing that was successfully applied.
    • Correction
    • Source
    • Cite
    • Save
    8
    References
    203
    Citations
    NaN
    KQI
    []
    Baidu
    map