Asymmetric bias-induced barrier lowering as an alternative origin of current rectification in geometric diodes

2021
Geometric diodes, which take advantage of geometric asymmetry to achieve current flow preference, are promising for THz current rectification. Previous studies relate geometric diodes’ rectification to quantum coherent or ballistic transport, which is fragile and critical of the high-quality transport system. Here we propose a different physical mechanism and demonstrate a robust current rectification originating from the asymmetric bias induced barrier lowering, which generally applies to common semiconductors in normal environments. Key factors to the diode’s rectification are carefully analyzed, and an intrinsic rectification ability at up to 1.1 THz is demonstrated. Current rectification in the THz regime using geometric diodes has been explained previously by exotic transport properties. Here, an alternative mechanism based on asymmetric bias-induced barrier lowering is presented.
    • Correction
    • Source
    • Cite
    • Save
    36
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map