Effect of P[MPEGMA-IL] on morphological evolution and conductivity behavior of PLA/PCL blends

2019
Dielectric relaxation spectroscopy (DRS) was used to investigate the effect of morphological evolution on conductivity behavior of PLA/PCL blends containing P[MPEGMA-IL]. The morphology of blends changes from sea-island morphology into co-continuous morphology with increasing P[MPEGMA-IL] content. P[MEPGMA-IL] could mainly localize in PCL domains and expand to the interface layer between the PLA and PCL phase because of the low viscosity of PCL phase and the high affinity of MEPGMA groups for both polymer phases. The dielectric results were discussed in terms of α relaxation that corresponds to normal and segmental mode movement, interfacial polarization that corresponds to interfacial aggregation of charge carriers, and ac conductivity that originates from conductive network of mobile charge carriers. Co-continuous morphology and high ions concentration lead to the enhancement of segment movement and ion conductive channel in PCL phase, which correspond to high conductivity and low activation energy of PLA/PCL/8P[MEGMA-IL] blend.
    • Correction
    • Source
    • Cite
    • Save
    42
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map