Two high-quality de novo genomes from single ethanol-preserved specimens of tiny metazoans (Collembola).

2021
BACKGROUND Genome sequencing of all known eukaryotes on Earth promises unprecedented advances in biological sciences and in biodiversity-related applied fields such as environmental management and natural product research. Advances in long-read DNA sequencing make it feasible to generate high-quality genomes for many non-genetic model species. However, long-read sequencing today relies on sizable quantities of high-quality, high molecular weight DNA, which is mostly obtained from fresh tissues. This is a challenge for biodiversity genomics of most metazoan species, which are tiny and need to be preserved immediately after collection. Here we present de novo genomes of 2 species of submillimeter Collembola. For each, we prepared the sequencing library from high molecular weight DNA extracted from a single specimen and using a novel ultra-low input protocol from Pacific Biosciences. This protocol requires a DNA input of only 5 ng, permitted by a whole-genome amplification step. RESULTS The 2 assembled genomes have N50 values >5.5 and 8.5 Mb, respectively, and both contain ∼96% of BUSCO genes. Thus, they are highly contiguous and complete. The genomes are supported by an integrative taxonomy approach including placement in a genome-based phylogeny of Collembola and designation of a neotype for 1 of the species. Higher heterozygosity values are recorded in the more mobile species. Both species are devoid of the biosynthetic pathway for β-lactam antibiotics known in several Collembola, confirming the tight correlation of antibiotic synthesis with the species way of life. CONCLUSIONS It is now possible to generate high-quality genomes from single specimens of minute, field-preserved metazoans, exceeding the minimum contig N50 (1 Mb) required by the Earth BioGenome Project.
    • Correction
    • Source
    • Cite
    • Save
    40
    References
    4
    Citations
    NaN
    KQI
    []
    Baidu
    map