Unique metabolic strategies in Hadean analogues reveal hints for primordial physiology

2021
Primordial microorganisms are postulated to have emerged in H2-rich alkaline Hadean serpentinite-hosted environments with homoacetogenesis as a core metabolism. However, investigation of two modern serpentinization-active analogues of early Earth reveals that conventional H2-/CO2-dependent homoacetogenesis is thermodynamically unfavorable in situ due to picomolar CO2 levels. Through metagenomics and thermodynamics, we discover unique taxa capable of metabolism adapted to the habitat. This included a novel deep-branching phylum, "Ca. Lithoacetigenota", that exclusively inhabits Hadean analogues and harbors genes encoding alternative modes of H2-utilizing lithotrophy. Rather than CO2, these metabolisms utilize reduced carbon compounds detected in situ presumably serpentinization-derived: formate and glycine. The former employs a partial homoacetogenesis pathway and the latter a distinct pathway mediated by a rare selenoprotein - the glycine reductase. A survey of serpentinite-hosted system microbiomes shows that glycine reductases are diverse and nearly ubiquitous in Hadean analogues. "Ca. Lithoacetigenota" glycine reductases represent a basal lineage, suggesting that catabolic glycine reduction is an ancient bacterial innovation for gaining energy from geogenic H2 even under serpentinization-associated hyperalkaline, CO2-poor conditions. This draws remarkable parallels with ancestral archaeal H2-driven methyl-reducing methanogenesis recently proposed. Unique non-CO2-reducing metabolic strategies presented here may provide a new view into metabolisms that supported primordial life and the diversification of LUCA towards Archaea and Bacteria.
    • Correction
    • Source
    • Cite
    • Save
    89
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map