Distribution of trace and major elements in subarctic ecosystem soils: Sources and influence of vegetation

2019 
Abstract Artic and subarctic environments are particularly sensitive to climate change with a faster warming compared to other latitudes. Vegetation is changing but its role on the biogeochemical cycling is poorly understood. In this study, we evaluated the distribution of trace elements in subarctic soils from different land covers at Abisko, northern Sweden: grassland, moor, broad-leaved forest, and peat bog. Using various multivariate analysis approaches, results indicated a spatial heterogeneity with a strong influence of soil horizon classes considered: lithogenic elements (e.g., Al, Cr, Ti) were accumulated in mineral horizon classes and surface process-influenced elements (e.g., Cd, Cu, Se) in organic horizon classes. Atmospheric influences included contamination by both local mines (e.g., Cu, Fe, Ni) and regional or long-range atmospheric transport (e.g., Cd, Pb, Zn). A non-negative matrix factorization was used to estimate, for each element, the contribution of various sources identified. For the first time, a comparison between geochemical and ecological data was performed to evaluate the influence of vegetation on element distribution. Apart from soil pH that could control dynamics of As, Cu, and Se, two vegetation classes were reported to be correlated to geochemical factors: forbs and shrubs/dwarf shrubs probably due to their annual vs. perennial activities, respectively. Since these are considered as the main vegetation classes that quickly evolve with climate change, we expect to see modifications in trace element biogeochemical cycling in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    5
    Citations
    NaN
    KQI
    []
    Baidu
    map