Sensitivity of Neutron-Rich Nuclear Isomer Behavior to Uncertainties in Direct Transitions.

2021 
Nuclear isomers are populated in the rapid neutron capture process (r process) of nucleosynthesis. The r process may cover a wide range of temperatures, potentially starting from several tens of GK (several MeV) and then cooling as material is ejected from the event. As the r-process environment cools, isomers can freeze out of thermal equilibrium or be directly populated as astrophysical isomers (astromers). Two key behaviors of astromers -- ground state isomer transition rates and thermalization temperatures -- are determined by direct transition rates between pairs of nuclear states. We perform a sensitivity study to constrain the effects of unknown transitions on astromer behavior. We also introduce a categorization of astromers that describes their potential effects in hot environments. We provide a table of neutron-rich isomers that includes the astromer type, thermalization temperature, and key unmeasured transition rates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map