Interplay between London Dispersion, Hubbard U, and Metastable States for Uranium Compounds.

2021 
High-throughput computational studies of lanthanide and actinide chemistry with density-functional theory are complicated by the need for Hubbard U corrections, which ensure localization of the f-electrons, but can lead to metastable states. This work presents a systematic investigation of the effects of both Hubbard U value and metastable states on the predicted structural and thermodynamic properties of four uranium compounds central to the field of nuclear fuels: UC, UN, UO2, and UCl3. We also assess the impact of the exchange-hole dipole moment (XDM) dispersion correction on the computed properties. Overall, the choice of Hubbard U value and inclusion of a dispersion correction cause larger variations in the computed geometric properties than result from metastable states. The weak dependence of structure optimization on metastable states should simplify future high-throughput calculations on actinides. Conversely, addition of the dispersion correction is found to offset the repulsion introduced by the Hubbard U term and provides greatly improved agreement with experiment for both cell volumes and heats of formation. The XDM dispersion correction is largely invariant to the chosen U value, making it a robust dispersion correction for actinide systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map