其他栏目
学术报告
Dr. Xiaowu Dai学术报告会
作者:发布时间:2024-09-23

题目:Machine Learning and Matching Markets

时间:2024年9月23日 10:30-12:00

地点:机械与动力工程学院 F207会议室

邀请人:李勇祥 副教授 (工业工程与管理系)

 

Biography

Xiaowu Dai is an assistant professor of Statistics and Data Science, and of Biostatistics, at UCLA. Previously, he was a postdoc at UC Berkeley from 2019-2022, advised by Michael I. Jordan. Before that, he received a Ph.D. in Statistics from UW-Madison, advised by Grace Wahba. Xiaowu received his B.S. from the Department of Mathematics at Shanghai Jiao Tong University, China, in 2014. His research is focused on developing statistical theory and methodology to address real-world problems that involve computational, inferential, and economic considerations.

 

Abstract

We study the problem of decision-making in the setting of a scarcity of shared resources when the preferences of agents are unknown a priori and must be learned from data. Taking the two-sided matching market as a running example, we focus on the decentralized setting, where agents do not share their learned preferences with a central authority. Our approach is based on the representation of preferences in a reproducing kernel Hilbert space, and a learning algorithm for preferences that accounts for uncertainty due to the competition among the agents in the market. Under regularity conditions, we show that our estimator of preferences converges at a minimax optimal rate. Given this result, we derive optimal strategies that maximize agents' expected payoffs and we calibrate the uncertain state by taking opportunity costs into account. We also derive an incentive-compatibility property and show that the outcome from the learned strategies has a stability property. Finally, we prove a fairness property that asserts that there exists no justified envy according to the learned strategies.

 

Copyright © 2016 开云网页登录 机械与动力工程学院 版权所有
分享到

Email:sjtume@sjtu.edu.cn
地址:上海市东川路800号开云网页登录 闵行校区机械与动力工程学院
邮编:200240

Baidu
map