代表性论文专著
第一作者或通讯作者*
[1] L. Yu, B. Aravind*, D. A. Lacoste, Mitigating the response of lean premixed swirl flames to acoustic excitation by nanosecond repetitively pulsed discharges at elevated pressures, Combust. Flame. 256 (2023) 112944.
[2] L. Yu, H. Wu, W. Zhao, Y. Qian, L. Zhu, X. Lu*, Experimental study on the application of n-butanol and n-butanol/kerosene blends as fuel for spark ignition aviation piston engine, Fuel. 304 (2021) 121362.
[3] L. Yu, W. Zhou, Y. Feng, W. Wang, J. Zhu, Y. Qian, X. Lu*, The effect of ammonia addition on the low-temperature autoignition of n-heptane: An experimental and modeling study, Combust. Flame. 217 (2020) 4–11.
[4] L. Yu, W.Y. Wang, S.X. Wang, Y. Feng, Y. Qian, X. Lu*, An experimental and modeling study of n-hexadecane autoignition under low-to-intermediate temperatures, Sci. China Technol. Sci. 63 (2020) 719–730.
[5] L. Yu, Y. Qiu, Y. Mao, S. Wang, C. Ruan, W. Tao, Y. Qian, X. Lu*, A study on the low-to-intermediate temperature ignition delays of long chain branched paraffin: Iso-cetane, Proc. Combust. Inst. 37 (2019) 631–638.
[6] L. Yu, Y. Mao, Y. Qiu, S. Wang, H. Li, W. Tao, Y. Qian, X. Lu*, Experimental and modeling study of the autoignition characteristics of commercial diesel under engine-relevant conditions, Proc. Combust. Inst. 37 (2019) 4805–4812.
[7] L. Yu, Y. Mao, A. Li, S. Wang, Y. Qiu, Y. Qian, D. Han, L. Zhu, X. Lu*, Experimental and modeling validation of a large diesel surrogate: Autoignition in heated rapid compression machine and oxidation in flow reactor, Combust. Flame. 202 (2019) 195–207.
[8] L. Yu, S. Wang, W. Wang, Y. Qiu, Y. Qian, Y. Mao, X. Lu*, Exploration of chemical composition effects on the autoignition of two commercial diesels: Rapid compression machine experiments and model simulation, Combust. Flame. 204 (2019) 204–219.
[9] L. Yu, Z. Wu, Y. Qiu, Y. Qian, Y. Mao, X. Lu*, Ignition delay times of decalin over low-to-intermediate temperature ranges: Rapid compression machine measurement and modeling study, Combust. Flame. 196 (2018) 160–173.
[10] B. Aravind, L. Yu*, D. A. Lacoste, Enhancement of lean blowout limits of swirl stabilized NH3-CH4-Air flames using nanosecond repetitively pulsed discharges at elevated pressures (AECS, under review)
[11] Y. Zhang, W. Zhou, Y. Liang, L. Yu*, X. Lu, An experimental and detailed kinetic modeling study of the auto-ignition of NH3/diesel mixtures: Part 2- Wide pressures up to 120 bar, (Combust. Flame, under review)
[12] W. Zhou, Y. Liang, Z. Wang, L Yu*, X. Lu Low-to-intermediate temperature autoignition of methyl myristate: Ignition delay time measurement and skeletal model development, (Combust. Flame, under review)
[13] Y. Zhang, W. Zhou, Y. Liang, L. Yu*, X. Lu, An experimental and detailed kinetic modeling study of the auto-ignition of NH3/diesel mixtures: Part 1- NH3 substitution ratio from 20% to 90%, Combust. Flame. (2022) 112391.
[14] W. Zhou, Y. Zhang, Y. Liang, L. Yu*, X. Lu, Combustion reaction kinetics of biodiesel/n-butanol blends: Experiments in an ultrahigh-pressure rapid compression machine, Combust. Flame. 245 (2022) 112313.
[15] J. Zhu, J. Li, S. Wang, M. Raza, Y. Qian, Y. Feng, L. Yu*, Y. Mao, X. Lu, Ignition delay time measurements and kinetic modeling of methane/diesel mixtures at elevated pressures, Combust. Flame. 229 (2021) 111390.
[16] Y. Qiu, W. Zhou, Y. Feng, S. Wang, L. Yu*, Z. Wu, Y. Mao, Y. Qian, X. Lu, An experimental and modeling study of autoignition characteristics of butanol/diesel blends over wide temperature ranges, Combust. Flame. 217 (2020) 175–187.
[17] S. Wang, L. Yu*, Z. Wu, Y. Mao, H. Li, Y. Qian, L. Zhu, X. Lu*, Gas-phase autoignition of diesel/gasoline blends over wide temperature and pressure in heated shock tube and rapid compression machine, Combust. Flame. 201 (2019) 264–275.
[18] W. Zhong, Q. Yuan, J. Liao, N.M. Mahmoud, W. Yuan, Z. He*, Q. Wang, L. Yu*, X. Lu, Experimental and modeling study of the autoignition characteristics of gasoline/hydrogenated catalytic biodiesel blends over low-to-intermediate temperature, Fuel. 313 (2022).
[19] J. Zhu, Y. Liang, S. Wang, L. Yu*, D. Zhou, Y. Qian, X. Lu, Parametric study on dual-fuel ignition characteristics under marine engine-relevant conditions, Fuel. 311 (2022).
[20] W. Wang, L. Yu*, Y. Feng, Y. Qian, D. Ju, X. Lu, Autoignition study of methyl decanoate using a rapid compression machine, Fuel. 266 (2020) 117060.
[21] Y. Feng, J. Zhu, Y. Mao, M. Raza, Y. Qian, L. Yu*, X. Lu, Low-temperature auto-ignition characteristics of NH3/diesel binary fuel: Ignition delay time measurement and kinetic analysis, Fuel. 281 (2020).
[22] 于亮,吴丹阳,吕兴才*,碳碳双键对3-己烯酸甲酯着火延迟的影响,开云网页登录
学报 52 (2018) 437-446.
[23]于亮, 孙书洲, 陶文操, 吕兴才*, 正癸烷的中低温着火特性, 燃烧科学与技术 23 (2017) 325-330.
其他共同作者
[24] W. Zhou, Y. Liang, X. Pei, Y. Zhang, L. Yu, X. Lu*, Autoignition of methyl palmitate in low to intermediate temperature: Experiments in rapid compression machine and kinetic modeling, Combust. Flame. 249 (2023) 112619.
[25] J. Zhu, D. Zhou, L. Yu, Y. Qian, X. Lu*, Construction of a skeletal multi-component diesel surrogate model by integrating chemical lumping and genetic algorithm, Fuel. 313 (2022).
[26] J. Zhu, S. Wang, M. Raza, Y. Feng, J. Li, Y. Mao, L. Yu, Y. Qian, X. Lu*, Autoignition behavior of methanol/diesel mixtures: Experiments and kinetic modeling, Combust. Flame. 228 (2021) 1–12.
[27] J. Zhu, M. Raza, J. Li, S. Wang, Y. Mao, Y. Feng, Y. Qian, L. Yu, X. Lu*, Impact of small-amount diesel addition on methane ignition behind reflected shock waves: Experiments and modeling, Fuel. 288 (2021).
[28] Z. Wu, Y. Mao, L. Yu, Y. Qian, X. Lu*, Auto-ignition characteristics of a near-term light surrogate fuel for marine diesel: An experimental and modeling study, Combust. Flame. 228 (2021) 302–314.
[29] S. Wang, Y. Liang, J. Zhu, M. Raza, J. Li, L. Yu, Y. Qian, X. Lu*, Experimental and modeling study of the autoignition for diesel and n-alcohol blends from ethanol to n-pentanol in shock tube and rapid compression machine, Combust. Flame. 227 (2021) 296–308.
[30] Y. Mao, L. Yu, Y. Qian, S. Wang, Z. Wu, M. Raza, L. Zhu, X. Hu, X. Lu*, Development and validation of a detailed kinetic model for RP-3 aviation fuel based on a surrogate formulated by emulating macroscopic properties and microscopic structure, Combust. Flame. 229 (2021).
[31] Y. Mao, J. Xia, C. Ruan, Z. Wu, Y. Feng, J. Zhu, S. Wang, L. Yu, X. Lu*, An experimental and kinetic modeling study of a four-component surrogate fuel for RP-3 kerosene, Proc. Combust. Inst. 38 (2021) 555–563.
[32] J. Li, J. Zhu, S. Wang, Y. Feng, W. Zhou, Y. Qian, L. Yu, X. Lu*, An experimental and modeling study of autoignition characteristics of two real low-octane gasoline fuels in a heated rapid compression machine at elevated pressures, Fuel. 295 (2021).
[33] Y. Feng, J. Zhu, S. Wang, L. Yu, Z. He, Y. Qian, X. Lu*, Theoretical and Experimental Study of 3-Pentanol Autoignition: Ab Initio Calculation, Shock Tube Experiments, and Kinetic Modeling, J. Phys. Chem. A. 125 (2021) 5976–5989.
[34] S. Wang, Y. Feng, Y. Qian, Y. Mao, M. Raza, L. Yu, X. Lu*, Experimental and kinetic study of diesel/gasoline surrogate blends over wide temperature and pressure, Combust. Flame. 213 (2020) 369–381.
[35] Y. Mao, M. Raza, Z. Wu, J. Zhu, L. Yu, S. Wang, L. Zhu, X. Lu*, An experimental study of n-dodecane and the development of an improved kinetic model, Combust. Flame. 212 (2020) 388–402.
[36] Z. Wu, Y. Mao, L. Yu, S. Wang, J. Xia, Y. Qian, X. Lu*, Surrogate Formulation for Marine Diesel Considering Some Important Fuel Physical-Chemical Properties, Energy Fuels. 33 (2019) 3539–3550.
[37] Z. Wu, Y. Mao, M. Raza, J. Zhu, Y. Feng, S. Wang, Y. Qian, L. Yu, X. Lu*, Surrogate fuels for RP-3 kerosene formulated by emulating molecular structures, functional groups, physical and chemical properties, Combust. Flame. 208 (2019) 388–401.
[38] S. Wang, Y. Mao, M. Raza, L. Yu, X. Lu*, Autoignition of diesel/oxygen/nitrogen mixture under elevated temperature in a heated shock tube, Fuel. 254 (2019).
[39] M. Raza, Y. Mao, L. Yu, X. Lu*, Insights into the Effects of Mechanism Reduction on the Performance of n-Decane and Its Ability to Act as a Single-Component Surrogate for Jet Fuels, Energy Fuels. 33 (2019) 7778–7790.
[40] Y. Qian, Z. Li, L. Yu, X. Wang, X. Lu*, Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines, Appl. Energy. 238 (2019) 1269–1298.
[41] Y. Mao, L. Yu, Z. Wu, W. Tao, S. Wang, C. Ruan, L. Zhu, X. Lu*, Experimental and kinetic modeling study of ignition characteristics of RP-3 kerosene over low-to-high temperature ranges in a heated rapid compression machine and a heated shock tube, Combust. Flame. 203 (2019) 157–169.
[42] Y. Mao, S. Wang, Z. Wu, Y. Qiu, L. Yu, C. Ruan, F. Chen, L. Zhu, X. Lu*, An experimental and kinetic modeling study of n-butylcyclohexane over low-to-high temperature ranges, Combust. Flame. 206 (2019) 83–97.
[43] Y. Mao, A. Li, L. Zhu, Z. Wu, L. Yu, S. Wang, M. Raza, X. Lu*, A detailed chemical mechanism for low to high temperature oxidation of n-butylcyclohexane and its validation, Combust. Flame. 210 (2019) 360–373.
[44] Y. Mao, Y. Feng, Z. Wu, S. Wang, L. Yu, M. Raza, Y. Qian, X. Lu*, The autoignition of iso-dodecane in low to high temperature range: An experimental and modeling study, Combust. Flame. 210 (2019) 222–235.
[45] A. Li, L. Yu, X. Lu*, Z. Huang, L. Zhu, Experimental and Modeling Study on Autoignition of a Biodiesel/ n-Heptane Mixture and Related Surrogate in a Heated Rapid Compression Machine, Energy Fuels. 33 (2019) 4552–4563.
[46] Y. Qiu, L. Yu, L. Xu, Y. Mao, X. Lu*, Workbench for the Reduction of Detailed Chemical Kinetic Mechanisms Based on Directed Relation Graph and Its Deduced Methods: Methodology and n-Cetane as an Example, Energy Fuels. 32 (2018) 7169–7178.
[47] Y. Qian, L. Yu, Z. Li, Y. Zhang, L. Xu, Q. Zhou, D. Han, X. Lu*, A new methodology for diesel surrogate fuel formulation: Bridging fuel fundamental properties and real engine combustion characteristics, Energy. 148 (2018) 424–447.
[48] H. Li, L. Yu, S. Sun, S. Wang, X. Lu*, Z. Huang, A Shock Tube Experimental and Modeling Study of Multicomponent Gasoline Surrogates Diluted with Exhaust Gas Recirculation, Energy Fuels. 32 (2018) 3800–3813.